Mittlere-Reife-Prüfung 2014 Mathematik II Aufgabe B2

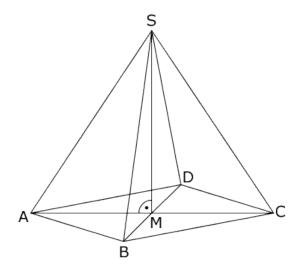
Aufgabe B2.

Die untenstehende Skizze zeigt ein Schrägbild der Pyramide ABCDS, deren Grundfläche die Raute ABCD mit dem Diagonalenschnittpunkt M ist.

Die Spitze S der Pyramide ABCDS liegt senkrecht über dem Punkt M.

Es gilt: $\overline{AC} = 12 \text{ cm}$; $\overline{BD} = 8 \text{ cm}$; $\overline{MS} = 9 \text{ cm}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.



Aufgabe B2.1 (4 Punkte)

Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Strecke [AC] auf der Schrägbildachse und der Punkt A links vom Punkt C liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

Bestimmen Sie sodann rechnerisch die Länge der Strecke $[A\,S]$ und das Maß α des Winkels $C\,A\,S$.

[Ergebnis: $\alpha = 56, 31^{\circ}$]

Aufgabe B2.2 (4 Punkte)

Für Punkte P_n auf der Strecke $[A\,S]$ gilt: $\overline{A\,P_n}(x) = x$ cm mit $x \in \mathbb{R}$ und $0 < x \le 10,82$. Die Punkte P_n sind Spitzen von Pyramiden $A\,B\,D\,P_n$.

Zeichnen Sie die Pyramide $ABDP_1$ und die dazugehörige Höhe $[H_1P_1]$ mit dem Höhenfußpunkt $H_1 \in [AM]$ für x = 5 in das Schrägbild zu B 2.1 ein.

Berechnen Sie sodann die Länge der Strecke $[M P_1]$ und das Volumen der Pyramide $A B D P_1$.

[Teilergebnisse: $\overline{MP_1} = 5,26 \text{ cm}; \overline{H_1P_1} = 4,16 \text{ cm}]$

Aufgabe B2.3 (2 Punkte)

Bestimmen Sie durch Rechnung den prozentualen Anteil des Volumens der Pyramide $A\,B\,D\,P_1$ am Volumen der Pyramide $A\,B\,C\,D\,S$.

Aufgabe B2.4 (3 Punkte)

Zeichnen Sie das Dreieck MCP_1 in das Schrägbild zu B 2.1 ein und berechnen Sie sodann dessen Flächeninhalt.

Aufgabe B2.5 (4 Punkte)

Die Strecke $[M P_0]$ besitzt unter den Strecken $[M P_n]$ die minimale Länge.

Zeichnen Sie diese Strecke in das Schrägbild zu B 2.1 ein und berechnen Sie deren Länge. Begründen Sie sodann, dass es unter den Dreiecken BDP_n kein Dreieck mit einem Flächeninhalt von $18~\mathrm{cm}^2$ gibt.