Mittlere-Reife-Prüfung 2018 Mathematik II Aufgabe B1

Aufgabe B1.

Die Parabel p verläuft durch die Punkte P(-2|19) und Q(4|-5). Sie hat eine Gleichung der Form $y=0,5x^2+b\,x+c$ mit $\mathbb{G}=\mathbb{R}\times\mathbb{R}$ und $b,c\in\mathbb{R}$.

Die Gerade g besitzt die Gleichung y = 0, 5x - 2 mit $\mathbb{G} = \mathbb{R} \times \mathbb{R}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

Aufgabe B1.1 (4 Punkte)

Zeigen Sie durch Berechnung der Werte für b und c, dass die Parabel p die Gleichung $y = 0, 5x^2 - 5x + 7$ besitzt.

Zeichnen Sie die Parabel p und die Gerade g für $x \in [0; 10]$ in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $0 \le x \le 10$; $-6 \le y \le 8$

Aufgabe B1.2 (2 Punkte)

Punkte A_n $(x|0, 5x^2 - 5x + 7)$ auf der Parabel p und Punkte C_n (x|0, 5x - 2) auf der Gerade g besitzen dieselbe Abszisse x. Diese Punkte bilden zusammen mit Punkten B_n und D_n Rauten $A_n B_n C_n D_n$, wobei gilt: $\overline{B_n D_n} = 2$ LE und $y_{C_n} > y_{A_n}$.

Zeichnen Sie die Rauten $A_1 B_1 C_1 D_1$ für x = 3 und $A_2 B_2 C_2 D_2$ für x = 6 in das Koordinatensystem zu B 1.1 ein.

Aufgabe B1.3 (3 Punkte)

Ermitteln Sie rechnerisch, für welche Werte von x es Rauten $A_n B_n C_n D_n$ gibt. Geben Sie das Intervall für x an.

Aufgabe B1.4 (4 Punkte)

Zeigen Sie, dass für die Länge der Strecken $[A_n C_n]$ in Abhängigkeit von der Abszisse x der Punkte A_n gilt: $\overline{A_n C_n}(x) = (-0, 5x^2 + 5, 5x - 9)$ LE.

Berechnen Sie sodann das Maß φ des Winkels $D_2 C_2 B_2$ und die Seitenlänge $\overline{A_2 B_2}$ der Raute $A_2 B_2 C_2 D_2$.

Aufgabe B1.5 (2 Punkte)

Bestimmen Sie die Koordinaten der Punkte B_n in Abhängigkeit von der Abszisse x der Punkte A_n .

Aufgabe B1.6 (2 Punkte)

Begründen Sie rechnerisch, dass der Flächeninhalt A der Rauten $A_n B_n C_n D_n$ stets kleiner als 7 FE ist.