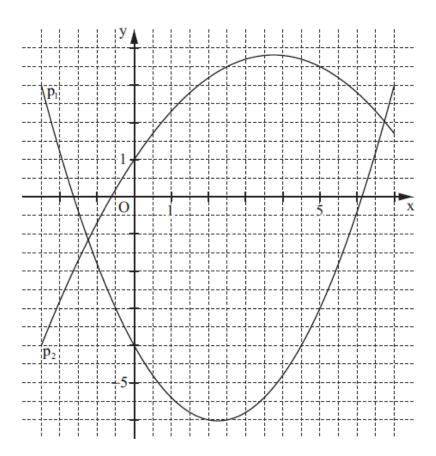
Mittlere-Reife-Prüfung 2019 Mathematik II Aufgabe A2

Aufgabe A2.

Gegeben sind die Parabeln p_1 mit der Gleichung $y=0,4x^2-1,8x-4$ und p_2 mit der Gleichung $y=-0,2x^2+1,5x+1$ ($\mathbb{G}=\mathbb{R}\times\mathbb{R}$).

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.



Aufgabe A2.1 (2 Punkte)

Punkte B_n $(x|0, 4x^2 - 1, 8x - 4)$ auf p_1 und Punkte C_n $(x|-0, 2x^2 + 1, 5x + 1)$ auf p_2 haben dieselbe Abszisse x. Sie sind zusammen mit A(0|1) für $x \in]0; 6, 74[$ Eckpunkte von Dreiecken $A B_n C_n$.

Zeichnen Sie das Dreieck AB_1C_1 für x=3 in das Koordinatensystem zu A 2. ein. Zeigen Sie sodann, dass für die Länge der Strecken $[B_nC_n]$ in Abhängigkeit von der Abszisse x der Punkte B_n gilt: $\overline{B_nC_n}(x)=\left(-0,6x^2+3,3x+5\right)$ LE.

Aufgabe A2.2 (2 Punkte)

Begründen Sie, weshalb es unter den Dreiecken AB_nC_n kein Dreieck AB_0C_0 gibt, dessen Seite $[B_0C_0]$ eine Länge von 10 LE besitzt.

Aufgabe A2.3 (1 Punkt)

Die Mittelpunkte M_n der Seiten $[B_n C_n]$ haben dieselbe Abszisse x wie die Punkte B_n . Zeigen Sie, dass für die y-Koordinate y_M der Punkte M_n gilt: $y_M=0,1x^2-0,15x-1,5$

Aufgabe A2.4 (3 Punkte)

Das Dreieck AB_2C_2 ist gleichschenklig mit der Basis $[B_2C_2]$. Berechnen Sie die x-Koordinate des Punktes M_2 .