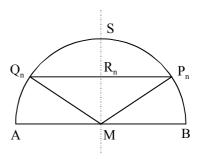
Abschlussprüfung 2003

an den Realschulen in Bayern

Mathematik II Aufgabengruppe B Aufgabe B 3

B 3.0 Die Strecke [AB] mit $\overline{AB} = 14 \text{ cm}$ und der Halbkreisbogen \widehat{BA} um den Mittelpunkt M der Strecke [AB] begrenzen eine Figur. Die Symmetrieachse dieser Figur schneidet den Halbkreisbogen \widehat{BA} im Punkt S, Parallelen zu AB schneiden den Halbkreisbogen \widehat{BA} in den Punkten P_n und Q_n .



1 P

Die Punkte P_n und Q_n und der Punkt M sind die Eckpunkte von gleichschenkligen Dreiecken P_nQ_nM mit der Basis $[P_nQ_n]$ und der zugehörigen Höhe $[MR_n]$ (siehe nebenstehende Skizze).

- B 3.1 Zeichnen Sie die in 3.0 beschriebene Figur mit ihrer Symmetrieachse MS und die Parallele P_1Q_1 im Abstand $\overline{MR}_1 = 4$ cm.
- B 3.2 Berechnen Sie, um wie viel Prozent der Kreisbogen $\widehat{P_1Q_1}$ länger ist als die Strecke $[P_1Q_1]$. (Auf zwei Stellen nach dem Komma runden.)
- B 3.3 Unter den gleichschenkligen Dreiecken P_nQ_nM gibt es ein gleichseitiges Dreieck P₂Q₂M.

 Zeichnen Sie das Dreieck P₂Q₂M in die Zeichnung zu 3.1 ein.

 Berechnen Sie den Flächeninhalt der von der Strecke [P₂Q₂] und dem Kreisbogen P₂Q₂ begrenzten Fläche. (Auf zwei Stellen nach dem Komma runden.)
- B 3.4 Die von der Strecke [AB] und dem Kreisbogen \widehat{BA} begrenzte Figur und die Dreiecke P_nQ_nM rotieren um die Symmetrieachse MS. Berechnen Sie den Oberflächeninhalt der Halbkugel. $\widehat{P_nR_n} = x$ cm mit $0 < x < 7; x \in IR$. Zeigen Sie, dass sich der Oberflächeninhalt A(x) der Kegel in Abhängigkeit von x wie folgt darstellen lässt: $A(x) = \pi \cdot (x^2 + 7x)$ cm² 3 P
- B 3.5 Berechnen Sie die Belegung für x auf zwei Stellen nach dem Komma gerundet, für die der Oberflächeninhalt A(x) des zugehörigen Kegels halb so groß ist wie der Oberflächeninhalt der Halbkugel.
- B 3.6 Berechnen Sie jeweils auf zwei Stellen nach dem Komma gerundet den Grundkreisradius $\overline{P_3R_3}$ und den Oberflächeninhalt A_3 für denjenigen Kegel, bei dem im Axialschnitt P_3Q_3M das Maß des Winkels P_3MQ_3 130° beträgt.