Prüfungsdauer: 150 Minuten

Abschlussprüfung 2004

an den Realschulen in Bayern

R4/R6

Mathematik I Au

Aufgabengruppe A

Aufgabe A 2

- A 2.0 Die Punkte A(1|-1), $B_n(3+4\cdot\cos\phi|1-3\cdot\sin^2\phi)$ mit $\phi\in[0^\circ;123,27^\circ[$ und C(5|1) sind Eckpunkte von Vierecken AB_nCD_n . Der Punkt S ist der Schnittpunkt der Diagonalen der Vierecke AB_nCD_n und zugleich der Mittelpunkt der Diagonale [AC]. Gleichzeitig teilt der Punkt S die Diagonalen $[B_nD_n]$ im Verhältnis $\overline{B_nS}:\overline{SD_n}=1:3$.
- A 2.1 Zeichnen Sie die Vierecke AB_1CD_1 für $\phi=90^\circ$ und AB_2CD_2 für $\phi=60^\circ$ in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-4 \le x \le 7$; $-3 \le y \le 7$

2 P

A 2.2 Die Punkte B_n können auf die Punkte D_n abgebildet werden.

Berechnen Sie die Koordinaten der Punkte D_n in Abhängigkeit von ϕ . Zeigen Sie sodann rechnerisch, dass sich die Gleichung des Trägergraphen p der Punkte D_n in

der Form $y = -\frac{1}{16} \cdot (x-3)^2 + 6$ darstellen lässt.

[Teilergebnis: $D_n(3-12\cdot\cos\varphi|-3+9\sin^2\varphi)$]

Zeichnen Sie sodann den Trägergraphen p in das Koordinatensystem zu 2.1 ein.

5 P

 $A\ 2.3\quad Unter\ den\ Vierecken\ AB_nCD_n\ gibt\ es\ ein\ Drachenviereck\ AB_3CD_3.$

Zeichnen Sie dieses Drachenviereck in das Koordinatensystem zu 2.1 ein.

Bestimmen Sie rechnerisch den zugehörigen Wert für ϕ sowie die Koordinaten des Punktes B_3 . (Auf zwei Stellen nach dem Komma runden.)

4 P

A 2.4 Zeigen Sie, dass sich der Flächeninhalt $A(\phi)$ der Vierecke AB_nCD_n in Abhängigkeit von ϕ wie folgt darstellen lässt:

$$A(\varphi) = (-24 \cdot \cos^2 \varphi + 16 \cdot \cos \varphi + 16) FE$$
.

4 P

 $A~2.5~Unter~den~Vierecken~AB_nCD_n~besitzt~das~Viereck~AB_0CD_0~den~gr\"{o}ßten~Fl\"{a}cheninhalt~A_{max}.$

Berechnen Sie diesen Flächeninhalt und den zugehörigen Wert von ϕ . (Auf zwei Stellen nach dem Komma runden.)

2 P