Prüfungsdauer: 150 Minuten

Abschlussprüfung 2007

an den Realschulen in Bayern

R4/R6

Mathematik I Nachtermin Aufgabe C 2

- C 2.0 Die Pfeile $\overrightarrow{AB}_n = \begin{pmatrix} 8 \cdot \sin \phi \\ \frac{2}{\sin \phi} \end{pmatrix}$ und $\overrightarrow{AC} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$ mit $A(0 \mid 0)$ spannen für $\phi \in]0^\circ; 90^\circ]$ Dreiecke AB_nC auf.
- C 2.1 Berechnen Sie die Koordinaten der Pfeile $\overrightarrow{AB_1}$ für $\phi = 15^\circ$, $\overrightarrow{AB_2}$ für $\phi = 30^\circ$ und $\overrightarrow{AB_3}$ für $\phi = 60^\circ$ jeweils auf zwei Stellen nach dem Komma gerundet. Zeichnen Sie sodann die Dreiecke AB_1C , AB_2C und AB_3C in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-5 \le x \le 8$; $-1 \le y \le 9$ 3 P

- C 2.2 Berechnen Sie das Maß α des Winkels B_2AC auf zwei Stellen nach dem Komma gerundet, den die beiden Pfeile \overrightarrow{AB}_2 und \overrightarrow{AC} einschließen.
- C 2.3 Im rechtwinkligen Dreieck AB_4C ist die Seite $[B_4C]$ Hypotenuse. Berechnen Sie den zugehörigen Wert von ϕ auf zwei Stellen nach dem Komma gerundet.
- C 2.4 Ermitteln Sie rechnerisch die Gleichung des Trägergraphen h der Punkte B_n . [Ergebnis: h: $y = \frac{16}{x}$]
- C 2.5 Unter den Dreiecken AB_nC gibt es das gleichschenklige Dreieck AB_5C mit der Basis [AC]. Berechnen Sie den Wert von ϕ auf zwei Stellen nach dem Komma gerundet. 4 P
- C 2.6 Zeigen Sie, dass für den Flächeninhalt A der Dreiecke AB_nC in Abhängigkeit von $\phi \ \ gilt: \ A(\phi) = \left(8 \cdot \sin \phi + \frac{4}{\sin \phi}\right) FE \ .$ Berechnen Sie die Werte von ϕ , sodass die Dreiecke AB_6C und AB_7C einen Flächeninhalt von 12 FE haben. 3 P