Aufgabe B 1 **Nachtermin**

B 1.0 Punkte $C_n(x \mid 0.8x)$ auf der Geraden g mit der Gleichung y = 0.8x ($G = \mathbb{R} \times \mathbb{R}$) bilden für x > 0 zusammen mit den Punkten A(0|0), B_n und D_n Drachenvierecke AB_nC_nD_n mit der Symmetrieachse g. Die Winkel B_nAC_n haben das Maß 60°. Punkte M_n sind die Schnittpunkte der Diagonalen der Drachenvierecke AB_nC_nD_n. Es gilt: $AM_n : M_{\overline{n}}C_n = 1:3$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

Zeichnen Sie die Gerade g, die Drachenvierecke $AB_1C_1D_1$ für x = 3.5 und B 1.1

 $AB_2C_2D_2$ für x = 8 sowie die Diagonalen $[B_1D_1]$ und $[B_2D_2]$ mit den

Diagonalenschnittpunkten M, und M, in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-2 \le x \le 12$; $-3 \le y \le 11$.

B 1.2 Bestätigen Sie durch Rechnung, dass für die Länge der Strecken [AB_n] gilt:

 $\overline{AB_n} = \frac{1}{2} \cdot \overline{AC_n}$. 2 P

B 1.3 Die Punkte C_n können auf die Punkte B_n abgebildet werden. Berechnen Sie die Koordinaten der Punkte B_n in Abhängigkeit von der Abszisse x

der Punkte C_n.

[Ergebnis: $B_n(0,60x | -0,23x)$] 3 P

1 P

B 1.4 Bestimmen Sie rechnerisch die Gleichung des Trägergraphen h der Punkte B_n. B 1.5 Das Drachenviereck AB₃C₃D₃ hat einen Flächeninhalt von 25 FE. Berechnen Sie

die Koordinaten des Punktes C₃.

B 1.6 Jedes Dreieck AB_nC_n und das zugehörige Drachenviereck AB_nC_nD_n haben jeweils einen gemeinsamen Umkreis, dessen Mittelpunkt U_n stets auf der Symmetrieachse

g liegt. Das Drachenviereck $AB_4C_4D_4$ hat den Umkreismittelpunkt $U_4(5|4)$. Zeichnen Sie das Drachenviereck $AB_4C_4D_4$ mit dem zugehörigen Umkreis in die

Zeichnung zu 1.1 ein. Berechnen Sie sodann die Koordinaten des Punktes B₄.

Begründen Sie, dass die Winkel D_nC_nB_n das Maß 60° haben.

2 P

3 P

3 P

3 P