http://www.realschulrep.de/

Seite 2

Mittlere-Reife-Prüfung 2010 Mathematik I Aufgabe A3

Aufgabe A3.

Gegeben sind Dreiecke PQ_nR mit den Seitenlängen $\overline{PQ_n}=3$ cm und $\overline{PR}=8$ cm. Die Winkel Q_nPR haben das Maß φ mit $\varphi\in]0^\circ;90^\circ[$.

Die nebenstehende Zeichnung zeigt das Dreieck PQ_1R für $\varphi=30^\circ$.

Aufgabe A3.1 (1 Punkt)

Geben Sie die Länge der Strecken $[Q_n R]$ in Abhängigkeit von φ an.

Aufgabe A3.2 (2 Punkte)

Die Dreiecke PQ_nR rotieren um die Gerade PR.

Zeigen Sie durch Rechnung, dass für den Oberflächen
inhalt O der entstehenden Rotationskörper in Abhängigkeit von φ gilt:

$$O(\varphi) = 3 \cdot \pi \cdot \sin \varphi \left(3 + \sqrt{73 - 48 \cdot \cos \varphi} \right) \text{ cm}^2.$$

Aufgabe A3.3 (2 Punkte)

Die entstehenden Rotationskörper setzen sich jeweils aus zwei Kegeln zusammen. Berechnen Sie, für welches Winkelmaß φ der Mantelflächeninhalt des Kegels mit der Spitze P einen Anteil von 30% am Oberflächeninhalt O des entstehenden Rotationskörpers hat.

Lösung

Aufgabe A3.

Gegeben sind Dreiecke PQ_nR mit den Seitenlängen $\overline{PQ_n}=3$ cm und $\overline{PR}=8$ cm. Die Winkel Q_nPR haben das Maß φ mit $\varphi\in]0^\circ;90^\circ[$.

Die nebenstehende Zeichnung zeigt das Dreieck PQ_1R für $\varphi = 30^{\circ}$.

Aufgabe A3.1 (1 Punkte)

Geben Sie die Länge der Strecken $[Q_n R]$ in Abhängigkeit von φ an.

Lösung zu Aufgabe A3.1

Seite eines Dreiecks bestimmen

Gegeben sind die Seiten $\overline{PQ_n}=3$ cm und $\overline{RP}=8$ cm und der eingeschlossene Winkel $\varphi=30^\circ.$

Gesucht ist die Länge des Seite $[Q_n R]$. Länge des Seite $[Q_n R]$ bestimmen:

Erläuterung: Kosinussatz

Sind in einem beliebigen Dreieck zwei Seiten b und c und der von diesen Seiten eingeschlossene Winkel α gegeben, so kann der Kosinussatz angewendet werden:

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \alpha$$

$$\overline{Q\,R_n}^2 = \overline{P\,Q_n}^2 + \overline{R\,P}^2 - 2 \cdot \overline{P\,Q_n} \cdot \overline{R\,P} \cdot \cos\varphi \mid \text{Wurzel ziehen}$$

$$\overline{QR_n} = \sqrt{\overline{PQ_n}^2 + \overline{RP}^2 - 2 \cdot \overline{PQ_n} \cdot \overline{RP} \cdot \cos \varphi}$$

$$\overline{QR_n} = \sqrt{3^2 + 8^2 - 2 \cdot 3 \cdot 8 \cdot \cos \varphi} \text{ cm}$$

$$\Rightarrow \overline{QR_n} = \sqrt{73 - 48 \cdot \cos \varphi} \text{ cm}$$

Aufgabe A3.2 (2 Punkte)

Die Dreiecke PQ_nR rotieren um die Gerade PR.

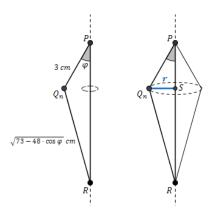
Zeigen Sie durch Rechnung, dass für den Oberflächen
inhalt ${\cal O}$ der entstehenden

Rotationskörper in Abhängigkeit von φ gilt:

$$O(\varphi) = 3 \cdot \pi \cdot \sin \varphi \left(3 + \sqrt{73 - 48 \cdot \cos \varphi} \right) \text{ cm}^2.$$

Lösung zu Aufgabe A3.2

Mantelfläche eines Kegels



Rotiert ein Dreieck PQ_nR um die Gerade PR, so entsteht ein Rotationskörper der aus zwei Kegeln besteht, einer mit Spitze P und der andere mit Spitze R. Beide haben den gleichen Radius r, der noch zu bestimmen ist.

Der Oberflächen
inhalt ${\cal O}$ des Rotationskörpers entspricht der Summe der Mantelflächen der beiden Kegeln.

Benötigte Angaben aus den vorherigen Aufgaben:

$$\frac{\overline{PQ_n}}{\overline{Q_n}R} = 3 \text{ cm}$$

$$\overline{Q_nR} = \sqrt{73 - 48 \cdot \varphi} \text{ cm}$$

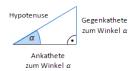
http://www.realschulrep.de/

Seite 6

1.

Radius r der beiden Kegeln bestimmen:

Erläuterung: Sinus eines Winkels



Der Sinus eines Winkels α ist ein Seitenverhältnis.

$$\sin \alpha = \frac{\text{Gegenkathete zu } \alpha}{\text{Hypotenuse}}$$

Gilt nur in rechtwinkligen Dreiecken.

Betrachtet man das rechtwinklige Dreieck $P\,Q_n\,S$, so gilt für den Sinus des Winkels φ :

$$\sin \varphi = \frac{r}{\overline{P Q_n}} \Rightarrow r = \overline{P Q_n} \cdot \sin \varphi$$

$$r = \overline{PQ_n} \cdot \sin \varphi$$

 $\Rightarrow r = 3 \cdot \sin \varphi \text{ cm}$

Mantelflächeninhalt M der beiden Kegeln bestimmen:

Erläuterung: Mantelflächeninhalt eines geraden Kreiskegels

Ein gerader Kreiskegel mit Radius $\,r\,$ und Mantellinie der Länge $\,s\,,$ hat einen Mantelflächeninhalt $\,M\,$ von:

$$M = s \cdot r \cdot \pi$$

$$M_{\text{Kegel mit Spitze }P} = \overline{P\,Q_n} \cdot r \cdot \pi$$

$$\Rightarrow M_{\text{Kegel mit Spitze }P} = (3 \cdot 3 \cdot \sin \varphi \cdot \pi) \text{ cm}^2$$

$$M_{\text{Kegel mit Spitze}R} = \overline{Q_n R} \cdot r \cdot \pi$$

$$\Rightarrow M_{\text{Kegel mit Spitze } R} = \left(\sqrt{73 - 48 \cdot \varphi} \cdot 3 \cdot \sin \varphi \cdot \pi\right) \text{ cm}^2$$

Oberflächeninhalt O bestimmen:

$$O(\varphi) = M_{\text{Kegel mit Spitze } P} + M_{\text{Kegel mit Spitze } R}$$

$$O(\varphi) = \left(3 \cdot 3 \cdot \sin \varphi \cdot \pi + \sqrt{73 - 48 \cdot \varphi} \cdot 3 \cdot \sin \varphi \cdot \pi\right) \text{ cm}^2$$

 $3 \cdot \pi \cdot \sin \varphi$ ausklammern:

$$\Rightarrow O(\varphi) = 3 \cdot \pi \cdot \sin \varphi \cdot \left(3 + \sqrt{73 - 48 \cdot \varphi}\right) \ \mathrm{cm}^2$$

Aufgabe A3.3 (2 Punkte)

Die entstehenden Rotationskörper setzen sich jeweils aus zwei Kegeln zusammen.

Berechnen Sie, für welches Winkelmaß φ der Mantelflächen
inhalt des Kegels mit der Spitze P einen Anteil von 30% am Oberflächen
inhalt O des entstehenden Rotationskörpers hat.

Lösung zu Aufgabe A3.3

Verhältnis von Teilflächen

Wenn der Mantelflächeninhalt $M_{\text{Kegel mit Spitze }P}$ einen Anteil von 30% am Oberflächeninhalt $O(\varphi)$ haben soll, dann muss gelten:

$$M_{\text{Kegel mit Spitze }P} = 30\% \cdot O(\varphi)$$

 \iff

$$M_{\text{Kegel mit Spitze }P} = 0, 3 \cdot O(\varphi)$$

Aus obiger Beziehung muss das Winkelmaß φ bestimmt werden.

Benötigte Angaben aus den vorherigen Aufgaben:

$$M_{\text{Kegel mit Spitze }P} = (3 \cdot 3 \cdot \pi \cdot \sin \varphi) \text{ cm}^2$$

$$O(\varphi) = 3 \cdot \pi \cdot \sin \varphi \cdot \left(3 + \sqrt{73 - 48 \cdot \cos \varphi}\right) \text{ cm}^2$$

Winkelmaß φ bestimmen:

$$M_{\text{Kegel mit Spitze }P} = 0, 3 \cdot O(\varphi)$$

$$3 \cdot 3 \cdot \pi \cdot \sin \varphi = 0, 3 \cdot 3 \cdot \pi \cdot \sin \varphi \cdot \left(3 + \sqrt{73 - 48 \cdot \cos \varphi}\right) \mid :0, 3 \cdot 3 \cdot \pi \cdot \sin \varphi$$

$$\frac{3}{0.3} = 3 + \sqrt{73 - 48 \cdot \cos \varphi} \mid -3$$

$$\frac{3}{0,3} - 3 = +\sqrt{73 - 48 \cdot \cos \varphi} \mid \text{Quadrieren}$$

$$\left(\frac{3}{0.3} - 3\right)^2 = 73 - 48 \cdot \cos \varphi \mid -73$$

$$\left(\frac{3}{0,3} - 3\right)^2 - 73 = -48 \cdot \cos \varphi \mid : (-48)$$

Mittlere Reife Bayern 2010 Mathematik I Aufgabe A3

 $\frac{\left(\frac{3}{0.3} - 3\right)^2 - 73}{-48} = \cos\varphi$

Erläuterung: Winkel berechnen

Um den Winkel φ aus $\cos \varphi = \frac{\left(\frac{3}{0.3} - 3\right)^2 - 73}{-48}$ zu bestimmen, wird im Taschenrechner (TR) folgendes eingegeben:

TR:
$$\frac{\left(\frac{3}{0.3} - 3\right)^2 - 73}{-48} \rightarrow \text{SHIFT} \rightarrow \cos$$

$$\Rightarrow \varphi = \cos^{-1} \left[\frac{\left(\frac{3}{0.3} - 3\right)^2 - 73}{-48} \right] = 60^{\circ}$$