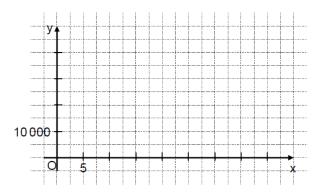
Mittlere-Reife-Prüfung 2011 Mathematik II Aufgabe A1


Aufgabe A1.

In Deutschland wächst derzeit mehr Holz nach als geschlagen wird. Der Besitzer eines Waldes mit einem Holzbestand von 5000 m³ rechnet mit einer jährlichen Wachstumsrate von 4,5%. Der Holzbestand y m³ nach x Jahren lässt sich demzufolge durch die Funktion f mit der Gleichung $y=5000\cdot 1,045^x$ mit $G=\mathbb{R}_0^+\times\mathbb{R}_0^+$ beschreiben.

Aufgabe A1.1 (2 Punkte)

Ergänzen Sie die Wertetabelle auf Tausender gerundet. Zeichnen Sie sodann den Graphen zu $\,f\,$ in das Koordinatensystem.

х	0	10	20	25	30	35	40
5000 · 1, 045 ^x							

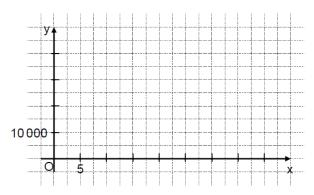
Aufgabe A1.2 (1 Punkt)

Geben Sie mithilfe des Graphen zu $f\,$ an, nach wie vielen Jahren der Holzbestand erstmals mehr als $10000\,$ m 3 ist.

Aufgabe A1.3 (2 Punkte)

Berechnen Sie, auf Kubikmeter gerundet, um wie viel der Holzbestand nach $32\,$ Jahren gestiegen ist.

Lösung


Aufgabe A1.

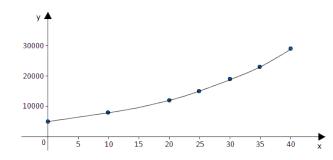
In Deutschland wächst derzeit mehr Holz nach als geschlagen wird. Der Besitzer eines Waldes mit einem Holzbestand von 5000 m³ rechnet mit einer jährlichen Wachstumsrate von 4,5%. Der Holzbestand y m³ nach x Jahren lässt sich demzufolge durch die Funktion f mit der Gleichung $y=5000\cdot 1,045^x$ mit $G=\mathbb{R}^+_0\times\mathbb{R}^+_0$ beschreiben.

Aufgabe A1.1 (2 Punkte)

Ergänzen Sie die Wertetabelle auf Tausender gerundet. Zeichnen Sie sodann den Graphen zu $\,f\,$ in das Koordinatensystem.

x	0	10	20	25	30	35	40
5000 · 1, 045 ^x							

Lösung zu Aufgabe A1.1

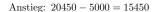

Wertetabelle

Wertetabelle:

x	0	10	20	25	30	35	40
5000 · 1, 045 ^x	5000	8000	12000	15000	19000	23000	29000

Skizze

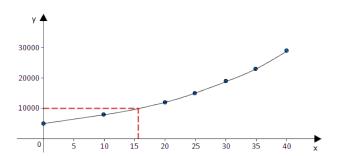
G_f einzeichnen:


Aufgabe A1.2 (1 Punkte)

Geben Sie mithilfe des Graphen zu $\,f\,$ an, nach wie vielen Jahren der Holzbestand erstmals mehr als $\,10000\,$ m³ ist.

Lösung zu Aufgabe A1.2

Skizze



http://www.realschulrep.de/

Antwort:

Nach 32 Jahren ist der Holzbestand um 15450 m^3 angestiegen.

$$y = 10000$$

$$\Rightarrow x \approx 16$$

Antwort:

Nach ca. 16 Jahren ist der Holzbestand erstmals mehr als 10000 m³.

Aufgabe A1.3 (2 Punkte)

Berechnen Sie, auf Kubikmeter gerundet, um wie viel der Holzbestand nach $32\,$ Jahren gestiegen ist.

Lösung zu Aufgabe A1.3

Exponentielles Wachstum

Gegeben:

$$y = 5000 \cdot 1,045^x$$

32 Jahre
$$\Rightarrow x = 32$$

Erläuterung: Einsetzen

$$x = 32$$
 wird in $y = 5000 \cdot 1,045^x$ eingesetzt.

$$y = 5000 \cdot 1,045^{32} \approx 20450$$

Holzbestand nach 32 Jahren: 20450 m³